Forecasting the spread between day-ahead and real-time electricity prices

K. Maciejowska Wrocław University of Science and Technology (PWr), Poland Department of Operation Research

A small RES utility:

• Sells the energy via a larger trading company.

A small RES utility:

- Sells the energy via a larger trading company.
- Does not have a direct effect on electricity prices
 - need to accept the market price,
 - does not propose bids.

A small RES utility:

- Sells the energy via a larger trading company.
- Does not have a direct effect on electricity prices
 - need to accept the market price,
 - does not propose bids.
- Decides about the quantity
 - the quantity offered day-ahead is traded in the spot market,
 - the actual production net the day-ahead offer is traded in the real-time or intra-day.

Strategic decisions need to account for:

- potential generation forecasting errors,
- spread between the spot and real-time prices.

Strategic decisions need to account for:

- potential generation forecasting errors,
- spread between the spot and real-time prices.

Utility will sell in the day-ahead market less energy than it forecasts to generate if

- the real-time market price is predicted to be higher than the spot price,
- it is loss averse (wants to avoid purchases, in case of low generation).

3 / 23

Literature

A few publication explaining the difference between the spot and real-time (or intra-day) markets:

- RES generation forecast errors drive the price difference (Woo et al. (2016), Kiesel, Paraschiv (2017))
- The trading strategy should depend on spread and generation forecast errors (Garnier, Madlener (2015))

but ...

No papers on forecasting the spread and its sign.

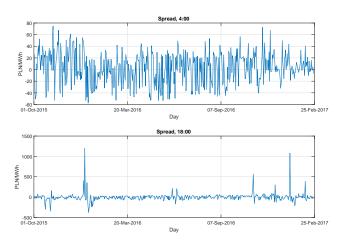
Polish electricity market

In Poland:

- Day-ahead market for hourly prices (run by TGE S.A., Polish Power Exchange)
- Intra-day market for hourly prices (run by TGE S.A., Polish Power Exchange)
- Balancing market (run by TSO, which sets prices)
 - single-price system (although allows for dual prices)


Data

- Data span the period: 2014.10.02 2017.02.28
 - spot market (P_t^S)
 - balancing market (P_t^B)
- The data is divided into estimation and validation periods.
 - estimation: moving window of 365 observations,
 - validation: the remaining 511 observations (146 for averaging, 365 for evaluation of forecast performance).


Data: balancing and spot prices on 2017.12.09

	Balancing market			TGE			
Hour	CRO [EURO/MWh]	CROs [EURO/MWh]	CROs [EURO/MWh]	Volume [MWh]	Spot [EURO/MWh]	Volume [MWh]	
1	33,55	33,55	33,55	149	28,75	2 525	
2	33,06	33,06	33,06	509	28,34	2 135	
3	33,55	33,55	33,55	573	28,35	2 210	
4	35,05	35,05	35,05	824	28,32	2 226	
5	35,05	35,05	35,05	937	28,31	2 243	
6	33,55	33,55	33,55	1 061	28,32	2 202	
7	33,55	33,55	33,55	426	28,87	2 292	
8	35,05	35,05	35,05	455	30,11	2 994	
9	39,28	39,28	39,28	581	33,48	2 837	
10	42,51	42,51	42,51	802			
11	47,86	47,86	47,86	860		Electr	ricity prices: 2017-12-09
12	54,73	54,73	54,73	927	60,00		
13	45,00	45,00	45,00	734			A A
14	41,89	41,89	41,89	656	50,00		
15	35,82	35,82	35,82	750	00,000 WW 40,000 20,000		
16	50,31	50,31	50,31	855	\$ 10,000		
17	54,73	54,73	54,73	841	≥ 30,00		
18	40,64	40,64	40,64	487			
19	35,82	35,82	35,82	337			
20	35,47	35,47	35,47	-125	10,00		
21	35,05	35,05	35,05	107	0,00		
22	33,55	33,55	33,55	0	0,00	1 2 2 4 5	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
23	27,59	27,59	27,59	-355			
24	27,59	27,59	27,59	-295			Hour
							—CRO —Spot

Balancing and spot prices

Spread: balancing - spot prices

Data features

- Balancing prices are much more volatile than the spot prices.
- The spot prices are on average lower than the balancing prices.
- There are spikes in spot prices, balancing prices and ... the spread.

prices	mean	st.dev
spot	162.18	63.75
balancing	164.74	85.61

 Analysis from a perspective of a small RES utility with no impact on prices.

- Analysis from a perspective of a small RES utility with no impact on prices.
- Needs to decide, where to sell 1 MWh: on a day-ahead or on a real-time market.

- Analysis from a perspective of a small RES utility with no impact on prices.
- Needs to decide, where to sell 1 MWh: on a day-ahead or on a real-time market.
- The decision is made conditional on the sign of the spread: $P_{ht}^S P_{ht}^B$.

- Analysis from a perspective of a small RES utility with no impact on prices.
- Needs to decide, where to sell 1 MWh: on a day-ahead or on a real-time market.
- The decision is made conditional on the sign of the spread: $P_{ht}^S P_{ht}^B$.
- Various strategies are considered:
 - always sell at spot (benchmark),
 - always sell at balancing,
 - condition the decision on the forecast of the spread,
 - condition the decision on the true the spread (know the future).

Forecasting the sign of the spread

$$S_{ht} = \left\{ \begin{array}{ll} 1 & P_{ht}^S \ge P_{ht}^B \\ 0 & P_{ht}^S < P_{ht}^B \end{array} \right.$$

Some problem:

- availability of the data in time,
- forecast evaluation.

Availability of the data in time

Day t — 2	Day $t-1$	Day t
Known prices: • Spot price: P_{ht-2}^S • Balancing prices: P_{ht-3}^B • Load forecast for $t-1$	Known prices: • Spot price: P_{ht-1}^S • Balancing prices: P_{ht-2}^B • Load forecasts for t	Time

Classification accuracy

$$p = Pr(\hat{S}_{ht} = 1 \land S_{ht} = 1) + Pr(\hat{S}_{ht} = 0 \land S_{ht} = 0)$$

Classification accuracy

$$p = Pr(\hat{S}_{ht} = 1 \land S_{ht} = 1) + Pr(\hat{S}_{ht} = 0 \land S_{ht} = 0)$$

$$p = \frac{1}{24T} \sum_{t=1}^{I} \sum_{h=1}^{24} \left(\hat{S}_{ht} S_{ht} + (1 - \hat{S}_{ht})(1 - S_{ht}) \right)$$

Classification accuracy

$$p = Pr(\hat{S}_{ht} = 1 \land S_{ht} = 1) + Pr(\hat{S}_{ht} = 0 \land S_{ht} = 0)$$

$$p = rac{1}{24\,T} \sum_{t=1}^{T} \sum_{h=1}^{24} \left(\hat{S}_{ht} S_{ht} + (1 - \hat{S}_{ht}) (1 - S_{ht}) \right)$$

Additional profit (over the benchmark strategy)

$$\pi_{ht} = (P_{ht}^B - P_{ht}^S)(1 - \hat{S}_{ht})$$

14 / 23

Classification accuracy

$$p = Pr(\hat{S}_{ht} = 1 \land S_{ht} = 1) + Pr(\hat{S}_{ht} = 0 \land S_{ht} = 0)$$

$$p = rac{1}{24\,T} \sum_{t=1}^{T} \sum_{h=1}^{24} \left(\hat{S}_{ht} S_{ht} + (1 - \hat{S}_{ht}) (1 - S_{ht}) \right)$$

• Additional profit (over the benchmark strategy)

$$\pi_{ht} = (P_{ht}^B - P_{ht}^S)(1 - \hat{S}_{ht})$$

$$\pi = \frac{1}{24T} \sum_{t=1}^{T} \sum_{h=1}^{24} \pi_{ht}$$

Data transformation

Two types of data transformation

• Logarithmic: $log(P_{ht})$

Data transformation

Two types of data transformation

- Logarithmic: $log(P_{ht})$
- PIT (Probability Integral Transform):
 - for a given hour $P_{ht} \rightarrow \text{its c.d.f}$
 - use the inverse of the c.d.f. of the normal distribution N(0,1)

Data transformation

Two types of data transformation

- Logarithmic: $log(P_{ht})$
- PIT (Probability Integral Transform):
 - for a given hour $P_{ht} \rightarrow \text{its c.d.f}$
 - use the inverse of the c.d.f. of the normal distribution N(0,1)
- Transform the data back into the original units

Forecasting

Models

- ARX models: for spread or separately for spot and balancing prices
- PC-ARX models

Forecasting

Models

- ARX models: for spread or separately for spot and balancing prices
- PC-ARX models
- 52 models: conditional on the model type, transformation, exogenous data and the lag structure

Exogenous data

Exogenous data (X):

- Forecasted demand
- Forecasted generation from JWDC units
- dummies for week days: d_1 Monday, d_2 Saturday, d_3 Sunday (and a constant for remaining days)

Exogenous data

Exogenous data (X):

- Forecasted demand
- Forecasted generation from JWDC units
- dummies for week days: d_1 Monday, d_2 Saturday, d_3 Sunday (and a constant for remaining days)

The general information about the day is provided by

- 3 principles components of the panel of lagged prices
- 2 principles components of the panel of the forecasted demand and generation

Top 10 models

Rank	$ \pi$	p	Model	Trans formation
1	5.8674	58.00%	ARX	PIT
2	5.5670	57.80%	ARX	PIT
3	5.3884	56.96%	ARX	PIT
4	5.2375	57.92%	ARX	PIT
5	5.1622	56.51%	PC-ARX	PIT
6	5.1160	56.30%	ARX	PIT
7	5.0872	54.67%	ARX	log
8	4.9788	54.94%	ARX	log
9	4.9441	55.86%	PC-ARX	PIT
10	4.8699	55.70%	PC-ARX	PIT

Forecast combination

Combining classification forecasts:

- majority vote with 0.5 threshold,
- majority vote with optimal threshold,
- weighted average,
- modified weighted average,
- naive Bayesian averaging

Forecast combination

Combining classification forecasts:

- majority vote with 0.5 threshold,
- majority vote with optimal threshold,
- weighted average,
- modified weighted average,
- naive Bayesian averaging

Pre-filtering:

- accuracy p > 0.55,
- top 25% in terms of profits.

Forecast combination

Method	π	p	
MA	58.00%	5.7274	
MA^*	57.80%	5.9615	
WA	56.96%	5.4929	
$W\!\!A^*$	57.92%	5.9405	
BA	56.51%	4.6772	

Final results

Method	р	π	Yearly profit
$\hat{S}_{ht}=1$	41.1%	0	0
$\hat{\mathcal{S}}_{ht}=0$	58.9%	5.4262	47533.51
$\hat{S}_{ht} = S_{ht}$	100%	19.7579	173079.20
Best	58.00%	5.8674	51398.42
$W\!\!A^*$	57.92%	5.9405	52038.78
MA*	57.80%	5.9615	52222.74

Conclusions

- Optimal trading strategy of small RES utility depends on the sign of the spread between the day-ahead and the real-time electricity prices.
- The real-time prices are difficult to model and forecast, much more volatile than day-ahead prices (depend on forecast errors of fundamentals, see Woo et al. (2016)).
- Spikes of day-ahead and real-time prices are not always synchronized (leads to spikes in the spread).

Conclusions

- Econometric models outperform fixed strategies.
- The additional yearly profit is 51398.42 PLN (12850 EURO) for individual models and 52222.74 PLN (13055 EURO) for their combinations.
- The maximum potential gain is 173079.2 PLN (43270 EURO), if the future is known (... still room for improvement)