Energy Finance Christmas Workshop, Kraków, 13.12.17

Modeling a non-linear impact of renewable energy forecasts on intra-day electricity prices

- Sergei Kulakov, Florian Ziel
 - University of Duisburg-Essen

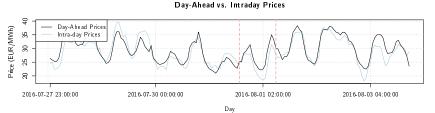
Table of Contents

- 1 Basic motivation
- 3. Our idea
- 2. Benchmark models
- 4. Empirical supply and demand curves
- 5. Our models
- 6. The obtained results
- 7. Concluding remarks

Basic motivation

- Growing dependency of energy sector on renewable resources
 - we place our focus solely on wind and solar power
 - its advantages are manifold
 - its supply is though sensitive to weather conditions
 - its generation size is thus certain only at the moment of physical delivery
- The market mechanism of EPEX SPOT exchange
 - prices for electricity are established multiple times a day
 - ▶ the classification below can hence be defined
 - day-ahead prices
 - > are determined 24 hours before the physical delivery of electricity
 - intra-day prices
 - > can be settled up until 30 minutes before the physical delivery of electricity
 - it follows that those prices are based on forecasts as to the renewable energy supply
 - naturally, intra-day predictions tend to be less erroneous
 - more accurate forecasts may drive the discrepancy between day-ahead and intra-day prices to narrow

Basic motivation: evidence from EPEX SPOT SE



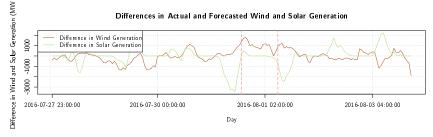


Figure: Dynamics of day-ahead and intra-day prices (upper graph) is plotted against the differences between realized and day-ahead forecasted wind and solar generation loads (lower graph) for a one-week sample from July, 27 to August, 03, 2016.

Our idea

- A forecasting error may exert a non-linear influence on the discrepancy between day-ahead and intra-day prices
 - we treat a forecasting error as a difference between realized and anticipated volumes of wind and solar power
 - the magnitude of the error's impact may depend on
 - the shape of the merit order curve
 - ▶ a sector of the merit order curve in which the market price is realized

Our idea: forecasted vs. realized supply curve

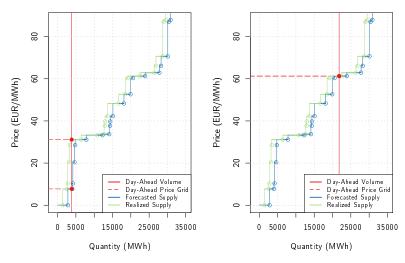


Figure: An example of a non-linear influence of a forecasting error on intra-day prices

Our idea (continued)

- ▶ We model intra-day prices given day-ahead data and the respective forecasting errors
 - empirical supply and demand curves provide a foundation for the modeling technique we used
 - the latter implies that our price can be determined as an equilibrium between a shifted supply and demand curves
 - an adjusted forecasting error determines the shift magnitude
 - we employ a non-linear optimization technique to define a necessary adjustment
- We want to prove that
 - a model which includes non-linear effects induced by a forecasting error may outperform a model which neglects them

Two benchmark models for the intra-day prices

Naive

$$P_t^{naive} = P_t^{DA} + \varepsilon_t \tag{1}$$

- where
 - ullet P^{DA} stands for a day-ahead price
 - ε_t is an error term
- ▶ Linear 1

$$P_t^{lm_1} - P_t^{DA} = \beta_0 + \beta_1 \max(W_t^{\Delta}, 0) + \beta_2 \min(W_t^{\Delta}, 0) + \beta_3 \max(S_t^{\Delta}, 0) + \beta_4 \min(S_t^{\Delta}, 0) + \beta_5 W_t^{A} + \beta_6 S_t^{A} + \varepsilon_t$$
 (2)

- where
 - W_t^{Δ} is a wind forecasting error
 - S_t^{Δ} shows a solar forecasting error
 - W_t^A stands for an absolute amount of generated wind energy
 - $S_t^{\stackrel{\scriptstyle A}{\scriptstyle L}}$ denotes an absolute volume of collected solar energy
- ▶ note that we model positive and negative forecasting errors separately
 - this method was applied also in e.g. [Kiesel and Paraschiv, 2017], [Soysal et al., 2017], [Ziel, 2017]
- ► Linear 2

$$P_t^{lm_2} = \beta_0 + \beta_7 P_t^{DA} + \beta_1 \max(W_t^{\Delta}, 0) + \beta_2 \min(W_t^{\Delta}, 0) + \beta_3 \max(S_t^{\Delta}, 0) + \beta_4 \min(S_t^{\Delta}, 0) + \beta_5 W_t^{A} + \beta_6 S_t^{A} + \varepsilon_t$$
(3)

An example of empirical supply and demand curves

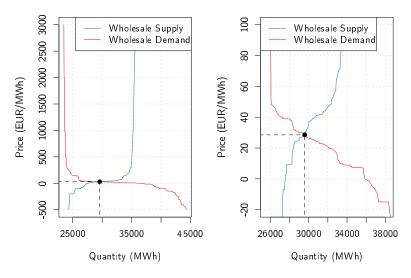
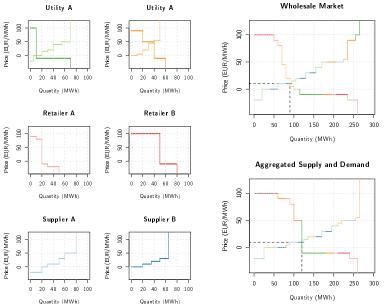


Figure: A wholesale market equilibrium on 2017-04-02 08-00-00 CET

An energy market: two perspectives [Knaut and Paulus, 2016]



Elastic demand curve vs. its inelastic analogue

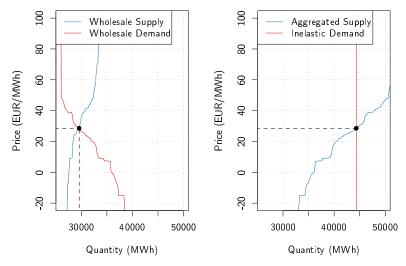


Figure: Wholesale market equilibrium on 2017-04-02 08-00-00 CET (left plot) vs. its manipulated form with an inelastic demand curve (right plot)

Transformation of supply and demand curves

- Transformation of the curves can be performed as follows
 - the formulas below were taken from [Coulon et al., 2014]
 - expression for an inelastic demand reads

$$Dem_t^{inelastic} = WSDem_t^{-1}(P_{\text{max}}) \tag{4}$$

- where
 - ullet a demand curve in a wholesale market is abbreviated by WSDem
 - ullet $P_{
 m max}=3000$ as prescribed by the regulation of EPEX
- equation for an inverse supply curve can be written as

$$Sup_t^{-1}(z) = WSSup_t^{-1}(z) + WSDem_t^{-1}(P_{\min}) - WSDem_t^{-1}(z)$$
 (5)

- where
 - ullet a supply curve in a wholesale market is denoted by WSSup
 - $P_{\min} = -500$
- lacksquare note that the above equation defines $Sup_t(z)$ automatically
 - · this holds since the function in question is monotonic

 $-\beta_{11}\max(S_t^{\Delta},0)-\beta_{12}\min(S_t^{\Delta},0)-\beta_{13}W_t^{A}-\beta_{14}S_t^{A}$

Our first model

- \blacktriangleright The model nlm_1 has the following specification
 - the expression for the shifted supply curve reads

$$Sup_t^{nlm_1}(z, \boldsymbol{\beta}_{nlm_1}) = Sup_t \left(z - \beta_8 - \beta_9 \max(W_t^{\Delta}, 0) - \beta_{10} \min(W_t^{\Delta}, 0) \right)$$
 (6)

- where
 - $\beta_{nlm_1} = (\beta_8, ..., \beta_{14})$
 - W_t^{Δ} is a wind forecasting error
 - S_t^{\Delta} shows a solar forecasting error
 - \dot{W}_t^A stands for an absolute amount of generated wind energy S_t^A denotes an absolute volume of collected solar energy
- the intra-day price model is established as follows

$$P_t^{nlm_1}(\boldsymbol{\beta}_{nlm_1}) = Sup_t^{nlm_1}(Dem_t^{inelastic}, \boldsymbol{\beta}_{nlm_1}) + \varepsilon_t \tag{7}$$

- where the first term on the right hand side represents an intersection between adjusted supply and inelastic demand curves
- the vector of the coefficients β is estimated by solving the following non-linear least squares problem

$$\widehat{\boldsymbol{\beta}}_{nlm_1} = \underset{\boldsymbol{\beta} \in \mathbb{R}^7}{\arg \min} \left(P_t^{ID} - P_t^{nlm_1}(\beta_8, ..., \beta_{14}) \right)^2 \tag{8}$$

R function optim was used as a major optimization tool

Our second model of intra-day prices

- lacktriangle The model nlm_2 aims to incorporate both linear and non-linear effects
 - the price equation of the model can thus be formulated as

$$P_t^{nlm_2}(\boldsymbol{\beta}_{nlm_2}) = \underbrace{P_t^{lm_2}(\beta_0, ..., \beta_7)}_{\text{linear component}} + \beta_{15} \underbrace{P_t^{nlm_1}(\beta_8, ..., \beta_{14})}_{\text{non-linear component}} + \varepsilon_t \tag{9}$$

- note that
 - ullet price in the linear model lm_2 is defined as

$$P_t^{lm_2}(\beta_0, ..., \beta_7) = \beta_0 + \beta_7 P_t^{DA} + \beta_1 \max(W_t^{\Delta}, 0) + \beta_2 \min(W_t^{\Delta}, 0) + \beta_3 \max(S_t^{\Delta}, 0) + \beta_4 \min(S_t^{\Delta}, 0) + \beta_5 W_t^{A} + \beta_6 S_t^{A}$$
 (10)

ullet price in the non-linear model nlm_1 is expressed as

$$P_t^{nlm_1}(\beta_8,...,\beta_{14}) = Sup_t^{nlm_1}(Dem_t^{inelastic},\beta_{nlm_1}) \tag{11} \label{eq:pnlm1}$$

- ullet it follows that the model depends on the vector $oldsymbol{eta}_{nlm_2}=(eta_0,...,eta_{15})$
- writing the respective non-linear least squares problem yields

$$\widehat{\boldsymbol{\beta}}_{nlm_2} = \underset{\beta \in \mathbb{R}^m}{\arg \min} \left(P_t^{ID} - P_t^{nlm_2}(\beta_0, ..., \beta_{15}) \right)^2$$
 (12)

• the initial values for the coefficients $(\beta_0,...,\beta_{14})$ were taken from the models lm_2 and nlm_1

Model comparison

ightharpoonup The obtained eta-coefficients for the year 2016 are summarized in the table below

	Multiplier	lm	lm_2	nlm_1	nlm_2
β_0	_	78.77	-240.53	-	-4.59
β_1	$\max(W_t^{\Delta}, 0)$	-0.96	-0.97	_	-0.305
β_2	$\min(W_t^{\Delta}, 0)$	-1.04	-1.03	_	-0.075
β_3	$\max(S_t^{\Delta}, 0)$	-0.77	-0.81	_	-0.559
β_4	$\min(W_t^{\Delta}, 0)$	-1.46	-1.44	_	-0.065
β_5	W_t^A	0.03	0.037	_	-0.057
β_6	S_t^A	0.004	0.0090	_	-0.613
β_7	P_t^{DA}	1	1.00085	_	0.652
β_8	_	_	_	0.10	-0.039
β_9	$\max(W_t^{\Delta}, 0)$	_	_	0.35	-0.090
β_{10}	$\min(W_t^{\Delta}, 0)$	_	_	0.24	0.256
β_{11}	$\max(S_t^{\Delta}, 0)$	_	_	0.62	0.552
β_{12}	$\min(W_t^{\Delta}, 0)$	_	_	0.31	0.332
β_{13}	W_t^A	_	_	-0.018	0.547
β_{14}	S_t^A	_	_	-0.023	0.68
β_{15}	$P_t^{nlm_1}$	_	_	_	0.369

Model comparison

► The out-of-sample performance of the models can be described as follows

	MAE	RMSE
Naive	5.053	8.731
lm_1	4.495	8.160
lm_2	4.519	8.222
nlm_1	4.561	8.825
nlm_2	4.473	8.242

- both MAE and RMSE tests were conducted using a rolling time window
 - ▶ the number of in-sample observations equals to 365 days
 - year 2016 was taken as an initial time frame
 - ▶ the out-of-sample horizon is limited to 186 days
 - ▶ the window size is 24 hours
- ▶ The obtained results are in general ambiguous
 - linear model lm_2 fails to surpass the model lm_1
 - model lm_1 produces lesser MAE and RMSE errors than the model nlm_1
 - model nlm_2 bears the smallest MAE figure and second lowest RMSE value

Model comparison

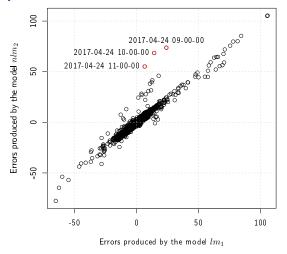
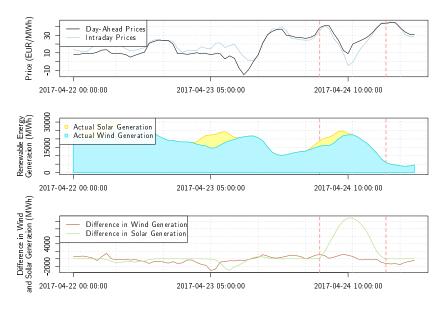


Figure: Errors of the models lm_1 (x-axis) and nlm_2 (y-axis) computed as an absolute difference between the observed and the suggested-by-the-models intra-day prices for the out-of-sample time span

Model comparison: a possible nature of the outliers



Concluding remarks

- By taking advantage of the empirical supply and demand curves we showed that
 - equilibrium in wholesale market coincides with that of aggregated supply and demand curves
 - ▶ it follows that both equilibria yield identical price
 - it is possible to model intra-day prices given the day-ahead data and forecasting errors in wind and solar power
 - the accuracy of a model improves whenever it encompasses non-linear effects implied by the errors
- Steps to be undertaken
 - the outliers are to be given a more thorough investigation
 - the model nlm_2 is to be tested without parameter $ar{eta}_7 P^{DA}$
 - lacktriangleright this point stems from the fact that the model lm_1 is more accurate than the model lm_2
 - a more elaborated optimization tool can be employed

Coulon, M., Jacobsson, C., and Ströjby, J. (2014).

Hourly resolution forward curves for power: Statistical modeling meets market fundamentals.

Kiesel, R. and Paraschiv, F. (2017).

Econometric analysis of 15-minute intraday electricity prices.

Energy Economics, 64:77-90.

Knaut, A. and Paulus, S. (2016).

Hourly price elasticity pattern of electricity demand in the german day-ahead market.

Technical report, EWI Working Paper.

Soysal, E. R., Olsen, O. J., Skytte, K., and Sekamane, J. K. (2017).

Intraday market asymmetries—a nordic example.

In European Energy Market (EEM), 2017 14th International Conference on the, pages 1–6. IEEE.

Ziel, F. (2017).

Modeling the impact of wind and solar power forecasting errors on intraday electricity prices.

In European Energy Market (EEM), 2017 14th International Conference on the, pages 1–5. IEEE.